Dynamic modeling

Connects scales
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Box models

Divide people into categories:

» Susceptible — Infectious — Recovered



What determines transition rates?

» People get better independently
» People get infected by infectious people



Conceptual modeling




Conceptual modeling

» What is the final result?
» When does disease increase, decrease?



Implementation

» The conceptually simplest way to implement this
conceptual model concretely is Ordinary Differential
Equations (ODEs)

» Other options may be more realistic
» Or simpler in practice

» Requires assumption about recovery and transmission



Recovery

» Infectious people recover at per capita rate ~

» Total recovery rate is ~/
» Mean time infectious is D = 1/~



Transmission

» Susceptible people get infected by:

» Going around and contacting people (rate ¢)
» Some of these people are infectious (proportion //N)
» Some of these contacts are effective (proportion p)

» Per capita rate of becoming infected is cpl//N. We write
BI/N (8 = cp)

» Population-level transmission rate is 5SI/N



Another perspective on transmission

» Infectious people infect others by:
» Going around and contacting people (rate ¢)
» Some of these people are susceptible (proportion S/N)
» Some of these contacts are effective (proportion p)
» Per capita rate of infecting others is cpS/N. We write
BS/N
» Population-level transmission rate is 5SI/N



ODE implementation
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Spreadsheet example



ODE assumptions

» Lots and lots of people
» Perfectly mixed




ODE assumptions
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» Waiting times are exponentially distributed
» Rarely realistic



Scripts vs. spreadsheets
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More about transmission

» 5 =pC
» Sometimes this
decomposition is clear

» But usually it’s not




Population sizes
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Population sizes
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Standard incidence

Standard incidence
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» Also known as frequency-dependent transmission



Mass action

Mass action
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» Also known as density-dependent transmission



Other

General
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» May not go to zero when N does
» May not go to co when N does



Digression — units

» T = 3SI/N : [ppl/time]
» [ :[1/time]
> B/y=p8D:[1]
» Standard incidence, Sy : [1/time]
» Mass-action incidence, 5 : [1/time]



Closing the circle



Births and deaths



Tendency to oscillate
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With individuality

SIR disease, N=100,000
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Summary

» Dynamics are an esssential tool to link scales
» Very simple models can provide useful insights

» More complex models can provide more detail, but also
require more assumptions, and more choices



Conclusions from simple models

» Threshold behaviour
» Tendency to oscillate



