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Scope and role of modeling

In the most general sense, we may consider modeling as an effort to understand one aspect

of the world by its similarity to something else. For instance, researchers may develop animal

models of the pathogenesis of various disease agents. Studying the disease process in the

animal model may then lead to insights that can be developed further. To be useful, the

animal model must resemble the disease in humans in ways the researchers consider to be

important. To be believable, the results from animal models must be tested.

Another type of model is the statistical model, which attempts to describe relevant aspects

of data or a data generation process. Such models frequently do not attempt to describe

the mechanism yielding the data, but rather form a basis for determining, for instance, if an

estimated difference between a treatment and control group could have plausibly resulted

from chance. Statistical models based on real data play an important and vital role in all

areas of epidemiology and lead to essential insights. However, when such models are not

based on a representation of the underlying medical or epidemiologic processes, such models

may not be generalizable beyond the circumstances under which the data were collected.

While statistical models play a fundamental role in research, including research in an-

alytical epidemiology, models based on representing the mechanism of disease transmission

have played a role in epidemiology for decades. Some of the earliest mathematical models

were developed by Sir Ronald Ross, who showed that mosquitoes were vectors of the malaria

plasmodium. Ross wished to describe the factors responsible for spread and dissemination

of the plasmodium in a quantitative way, and published papers describing what was called
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a priori pathometry.

Mathematical models are attempts to gain insight into the processes of disease trans-

mission and persistence using mathematical representations of the mechanisms of disease

transmission. Models may be used to address a variety of theoretical and practical ques-

tions; these applications may include forecasting for planning, designing interventions, or

simply improving our understanding. For instance, modelers may wish to estimate the

number of hospital beds needed to prepare for SARS, or to estimate how many deaths of

hospitalizations might result from pandemic influenza. Modelers may wish to determine

whether quarantine is warranted during an influenza outbreak, or whether ring vaccination

would be sufficient to control bioterrorist smallpox. As examples of improving understand-

ing, modelers may wish to estimate the contribution of superspreaders to the invasion of

a pathogen into a new region, estimate the best tradeoff of virulence and transmissibility

a pathogen should seek if public health control measures change, or to determine how the

mortality rate may affect the number of people who are ultimately infected by a pathogen.

In general, the most important strength of mathematical models of the disease process is

the ability to explore counterfactual scenarios or conditions for which no data is available,

for instance, to examine the consequences of untested control strategies or the spread of a

novel pathogen.

Mathematical models are most credible when the mathematical analogy which consti-

tutes the representation are clear and plausible—when the model representation resembles

the epidemic in ways the researchers consider most important. Understanding what the most

important features of a disease transmission process are leads modelers at times into vigor-

ous debate, frequently manifesting a tension between the need for insight through elegant

simplicity on the one hand, and realism through increased detail on the other. Finally, note

that as is the case with other types of models in science, the insights gained from modeling

must ultimately be tested in some way.

In this brief lecture, we will discuss some key concepts and simple models that have

been used in mathematical epidemiology, and discuss how researchers applied some of these
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principles to an emerging pathogen.

The Reed-Frost Model

A classic model of infectious disease transmission was developed during the 1930s by

Lowell J. Reed and Wade Hamptom Frost of Johns Hopkins. Because the model is simple

to explain and provides valuable insights, we will discuss it at this time.

In the classical Reed-Frost model, we assume a fixed population of size N . At each time,

there are a certain number of cases of disease, C, and a certain number of susceptibles, S.

We assume each case is infectious for a fixed length of time, and ignore the latent period;

when individuals recover, we assume that they are immune to further infection. During

the infectious period of each case, we assume that susceptibles may be infected, so that the

disease may propagate further. This constitutes an idealized, or abstract, model, exhibiting

some features of an epidemic system.

Because we assume a fixed length infectious period and neglect the latent period, the

generations of infection stay separate. At the beginning, we have only the generation of

cases that starts the disease transmission. After the recovery of this generation, the new

cases that resulted from transmission constitute the second generation of cases. These, in

turn, recover, but may give rise to a third generation. Let C1 be the number of cases in the

first generation, and S1 be the number of susceptibles that the first generation may place

at risk of new infection. Similarly, let C2 be the number of cases in the second generation,

and S2 the number of susceptibles present for the second generation of cases to potentially

expose to disease; in general, the number of cases at generation t is denoted Ct and there

are St susceptibles at that time.

The basic Reed-Frost model assumes homogeneity of risk of infection throughout the

population. In particular, we assume that each susceptible has a risk p of being infected by

any of the infectives in the population. In a more realistic model, we might assume that

this probability depends on the population size. We might also assume that each susceptible

does not have the same risk of being infected by each infective.
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Assuming, however, that each susceptible has a risk p of being infected by each infective,

we can then find the probability distribution of the number of cases in the second generation.

In other words, we can find the probability that the number of cases in the second generation

takes various values. For instance, if none of the susceptibles gets infected, we would have

no cases in the second generation; we could determine the probability that C2 is zero, i.e.

P (C2 = 0).

If each susceptible has a risk p of being infected by each infective, what is the chance that

a particular susceptible will be infected? Since there are C1 infectives, a sufficient exposure

from any infective would cause the susceptible to become infected. There are thus many

ways to be infected—a susceptible could be infected by the first infective, or the second, or

the third, etc., or may receive a sufficient exposure from more than one infective or even

from all. On the other hand, there is only one way to escape infection, and that is to escape

infection (to fail to receive a sufficient exposure) from all the infectives in the population.

The next assumption we will make for the basic Reed-Frost model is that the exposures

are independent. Each infective constitutes an independent risk for each susceptible, and

whether any susceptible is infected or not is independent of all the other susceptibles. With

this assumption, we can compute the chance of escaping infection. Considering one particular

susceptible individual, this susceptible has a chance 1− p of escaping infection from the first

case. There is also a chance 1 − p of escaping infection from the second case, and so on

through all C1 cases we have at the beginning. Since we must determine the chance of

escaping infection from the first and from the second and so forth, we may use independence

to compute this by multiplying the probabilities. The probability of escaping infection from

the first and second individuals is the probability of escaping infection from the first, times

the probability of escaping infection from the second, and so forth. Thus, the chance of

escaping infection from all susceptibles is (1− p)× (1− p)× · · · × (1− p), where there are

C1 terms being multiplied. This is simply (1− p)C1 for the probability of escaping infection.

Thus, the probability of being infected is simply 1− (1− p)C1 .

As a brief digression, models of this form, known as binomial risk models, are frequently
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used to analyze data for many real diseases. For instance, the application of binomial risk

models to data from the San Francisco Men’s Health Study led to the estimate that there

is a 10% chance, per partnership, of the transmission of the HIV virus from an infected

partner to an uninfected partner, for MSMs in San Francisco in the 1980s. Such models

have been used to analyze HIV transmission data per act, rather than per partnership, to

estimate potential declines in HIV infectivity due to the widespread use of antiretrovirals,

or to analyze the cost-effectiveness of HIV prevention interventions in sub-Saharan Africa.

Returning to the Reed-Frost model, we have shown that the probability that any of the

S1 susceptibles will be infected is 1− (1− p)C1 . We must now determine the probability dis-

tribution of the number of new cases, C2. Mathematically, we may consider each susceptible

to be a Bernoulli trial, a random experiment with two outcomes, conventionally known as

success and failure. Since these trials are independent of one another, and since the “success”

probability is the same for each trial, we may use the binomial distribution to determine the

probability distribution of the number of successes. For simplicity, let us denote the infection

probability (“success” probability) by r; we have shown that r = 1 − (1 − p)C1 . Then the

binomial probability distribution gives us the probability distribution of the number of cases

in the next generation:

P (C2 = x) =

(
S1

x

)
rx(1− r)S1−x.

Here, the notation
(
S1

x

)
is the number of ways to choose the supposed x new cases out of the

S1 number of susceptibles. The number of susceptibles at time 2 is simply S2 = S1 − C2.

The same reasoning can be applied at each time. Of course, the risk r changes if the

number of cases changes, so we may write the risk at time t as rt = 1− (1− p)Ct . Therefore,

the probability distribution of the number of cases at time t is

P (Ct = x) =

(
St−1

x

)
rxt−1(1− rt−1)

St−1−x,

and St = St−1 − Ct.

Before exploring the behavior of this model further, observe that the number of cases

over time is random. The randomness arises because of our assumptions about the nature
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of transmission. The quantities predicted by the model, i.e. Ct and St, are random variables

whose distribution is specified by the model. In the same way that a statistician might model

the height of a randomly selected person as having a particular distribution, say a normal

distribution with some specific mean and variance. Just as the statistician may consider

the height of a specific person as being a realization of this random distribution (a random

variate drawn from the specified distribution), we may think of a particular realization of

this process as leading to a particular number of cases and susceptibles over time. In general,

even if our parameters p, N , and C1 remain the same, the number of cases may be different,

just as the height of a second person drawn from the same population may be different. The

Reed-Frost model is an example of a stochastic model, and the sequence of numbers of cases

and susceptibles constitutes a stochastic process.

Models similar to the Reed-Frost model have been analyzed carefully by mathematicians,

and these models are called chain binomial models. Rather than explore the formal analysis,

we will explore the dynamics of the Reed-Frost model using computer simulation. The

exciting open-source statistical package R http://www.r-project.org will provide us with

an excellent platform for such exploration.

We first write a function in R which provides us with a simulation of the Reed-Frost

model. Without going into details of the programming language, the function does three

things. First, it checks that the preconditions for the computation are met. For instance, a

negative transmission probability is simply meaningless, so the function checks to make sure

the transmission probability is not negative. The function checks other conditions as well,

such as the requirement that the number of cases not be larger than the population size.

Second, the function computes the risk for each susceptible as 1 − (1 − p)Ct , and uses the

built-in random number generator for the binomial, called rbinom, to compute the random

number of secondary cases. Finally, the function returns the results to us.

reed.frost <- function(pp, nn, c1, t.end, cumul.only = FALSE) {

if (t.end > 1000) {
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stop("t.end too big")

}

if (t.end <= 0) {

stop("negative or zero ending time")

}

if (c1 < 0 || abs(round(c1) - c1) > 1e-07) {

stop("invalid starting number of cases")

}

if (nn < 0 || abs(round(nn) - nn) > 1e-07) {

stop("invalid population size")

}

if (pp > 1 || pp < 0) {

stop("invalid transmission probability")

}

if (nn < c1) {

stop("more cases than people")

}

ss <- rep(0, t.end)

cc <- rep(0, t.end)

cumul <- 0

current.cc <- c1

current.ss <- nn - c1

if (!cumul.only) {

cc[1] <- current.cc

ss[1] <- current.ss

}

for (ii in 2:t.end) {

rr <- 1 - (1 - pp)^current.cc
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current.cc.new <- rbinom(1, size = current.ss, prob = rr)

current.ss.new <- current.ss - current.cc.new

if (!cumul.only) {

ss[ii] <- current.ss.new

cc[ii] <- current.cc.new

}

current.ss <- current.ss.new

current.cc <- current.cc.new

cumul <- cumul + current.cc.new

if (current.cc.new == 0) {

if (!cumul.only) {

for (jj in (ii + 1):t.end) {

ss[jj] <- current.ss

}

}

break

}

}

if (cumul.only) {

cumul

} else {

list(susc = ss, cases = cc, cumul.new.cases = cumul)

}

}

reed.frost.average <- function(pp, nn, c1, t.end, nreps = 1, cumul.only = FALSE) {

if (cumul.only) {

cumul <- reed.frost(pp, nn, c1, t.end, cumul.only)

for (ii in 2:nreps) {
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cumul <- cumul + reed.frost(pp, nn, c1, t.end, cumul.only)

}

cumul/nreps

} else {

run <- reed.frost(pp, nn, c1, t.end)

ss <- run$susc

cc <- run$cases

for (ii in 2:nreps) {

run <- reed.frost(pp, nn, c1, t.end)

ss <- ss + run$susc

cc <- cc + run$cases

}

list(susc = ss/nreps, cases = cc/nreps)

}

}

Let us use this function to create a random epidemic. Assume that the population size

is 100, and the transmission probability is 0.02. We will run this model five times, and plot

them all.

end.time <- 100

pp <- 0.02

sim1 <- reed.frost(pp = pp, nn = 100, c1 = 1, t.end = end.time)

sims <- list(sim1)

tot.reps <- 5

for (ii in 2:tot.reps) {

new.sim <- reed.frost(pp = pp, nn = 100, c1 = 1, t.end = end.time)

sims[[ii]] <- new.sim

}
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times <- 1:end.time

As the figure illustrates, each epidemic is somewhat different.

It will be interesting to plot the average number of cumulative cases for different values

of the probability p. Let us begin for a small population, of size ten. We will average the

results of 1000 repetitions for each value of the probability.

nseps <- 50

ps <- seq(0, 0.2, by = (0.2)/nseps)

ans <- rep(0, length(ps))

nreps <- 1000

nn <- 10

for (ii in 1:length(ps)) {

ans[ii] <- reed.frost.average(pp = ps[ii], nn = nn, c1 = 1, t.end = 50,

nreps = nreps, cumul.only = TRUE)

}

Next, we consider a population of size 100:

ps <- seq(0, 0.02, by = (0.02)/nseps)

ans <- rep(0, length(ps))

nn <- 100

for (ii in 1:length(ps)) {

ans[ii] <- reed.frost.average(pp = ps[ii], nn = nn, c1 = 1, t.end = 200,

nreps = nreps, cumul.only = TRUE)

}

For a population of size 1000:
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ps <- seq(0, 0.002, by = (0.002)/nseps)

ans <- rep(0, length(ps))

nn <- 1000

for (ii in 1:length(ps)) {

ans[ii] <- reed.frost.average(pp = ps[ii], nn = nn, c1 = 1, t.end = 1000,

nreps = nreps, cumul.only = TRUE)

}

To help us understand these results, we will compute the expected number of cases that

will result from a single case at the beginning of the epidemic. At the beginning of the

epidemic, we have S1 susceptibles, and one single case. The risk that each susceptible has of

becoming infected is 1− (1− p)1 = p.

For a binomial distribution with N trials and p the probability of success per trial, the

expected value is Np. This is what the average of a very large number of repetitions should

be close to. Intuitively, imagine that you have a very large population, much larger than

any possible sample. Suppose the prevalence of a risk factor is 20% in this population. If

you take a sample of size 100, you expect 20 people, or 100× 0.2, to have the risk factor.

For the Reed-Frost model, we expect the number of cases in the second generation to be

S1p. If S1p > 1, we expect the epidemic to initially increase, and if S1p < 1, we expect the

initial case to not even, on average, replace itself. In this latter circumstance, we expect a

small cluster of cases, perhaps, but no large-scale epidemic.

In the examples we examined, we saw fairly small numbers of cases when we were below

the critical value of p. Above this value, we began to see a substantial fraction of the

population begin, on average, to become infected.

The expected number of secondary cases at the beginning of an epidemic, when everyone

is susceptible, is called the basic reproduction number or basic reproduction ratio or

basic reproductive rate, and is usually denoted R0. For most epidemic models, we find that

when the basic reproduction number is less than one, conditions do not favor epidemic spread
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when the disease is introduced, and conditions do not favor the endemic persistence of the

disease.

Many authors reserve the term “basic reproduction number” to refer to a hypothetical

population in which no disease control measures are present. When control measures are

in place, the expected number of secondary cases an initial case can cause in a susceptible

population is referred to by some other expression. Thus, if the basic reproduction number

is greater than one, but the, say, realized reproduction number is less than one, the measures

are sufficient to control a disease that would otherwise invade.

One way to understand the effect of a control measure is to consider a perfect vaccine

administered to a large fraction of the population. Suppose that we are considering a disease

for which the basic reproduction number is two. If we vaccinate, say, 80% of the population,

then we have deprived the pathogen of most of its potential hosts. If we are assuming

a homogeneously mixing model, then we may imagine that on average, only 20% of the

contacts of the initial case are actually susceptible. The initial case may only produce 20%

of the number of new cases that it would have produced without the vaccination program,

or 0.4 on average. We expect the disease to not spread far in the population. Thus, it is

conceivable that we could control a disease by vaccination even without complete coverage;

the remaining individuals are said to be protected by herd immunity. However, it should

be noted the crucial role of our assumption of homogeneity; we needed to conclude that if

80% of the population was vaccinated, that 80% of the contacts of a case are vaccinated.

In practice, this is not often realized, and claims regarding herd immunity may need to be

tempered with a careful consideration of how the vaccinated cases are distributed.

Beyond simple models

Models of realistic diseases extend the Reed-Frost model in include many features that the

infection is known to have. Such extensions may include a more complex representation of

the natural history. No disease really has a fixed duration of infectivity, as we assumed in the

Reed-Frost model. Rather, the duration of infectivity may follow a distribution that could
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be estimated, in principle, from data. Moreover, all diseases have a latent period, between

the time of infection and the time of infectiousness. Infectiousness itself may vary over

the course of the illness, and may preceed the appearance of specific symptoms. Infections

may also differ considerably from person to person, depending on nutritional status, prior

immunity, age or other factors. Diseases may be more likely to be transmitted to individuals

in the same household, or to other individuals in the same risk group. For some infections,

host immunity effectively prevents ever having the same disease again, but for others, such

protection may not be realized. Diseases may also be transmitted by different routes, and

different methods may be required to model a vector borne disease, a water borne disease,

a sexually transmitted disease, or an airborne disease.

Construction of convincing models requires such considerations be examined in detail.

Frequently, simplifying assumptions are made in modeling, and sometimes these assumptions

serve to enhance understanding with little quantitative effect. For instance, simplifying the

shape of the incubation period may have a small effect on the predicted epidemic curve. On

the other hand, if a model assumes that a certain vaccine is more effective than the data

indicate, or that the disease is transmissible before it can be detected through symptoms, the

results may markedly change. Effective critique of a model requires understanding of both

the biology and epidemiology of the pathogen, as well as the sensitivity of the mathematical

conclusions to the assumptions.

Concluding remarks

Epidemic transmission models provide a valuable way to gain insights into the nature of

an epidemic. Mathematical models frequently depend on data that may be difficult to collect

or validate. Construction of effective models requires collaboration between medical experts

and modelers; effective critique of them requires an understanding of both the biomedical

assumptions as well as the mathematical details. However, models remain a valuable tool

for enhancing our understanding of epidemic mechanisms, and are perhaps most valuable

in examining counterfactual scenarios for disease control, where no data are yet available.
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When an emerging pathogen threatens to cause an epidemic, it is unlikely that a controlled

trial of different intervention strategies will be available in time.
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