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What happened?

Antenatal HIV Prevalence in Harare



Are these different?

Measles Outbreaks
5 Urban Villages 5 Rural Villages



Why fit models to data?

Estimate quantities/parameters of interest
Inference: Test hypotheses

Model assessment:
Assess plausibility or model comparison

End goal: explain observed patterns or predict



Statistical Models

A familiar starting point

Analogous to fitting dynamical models

Abstraction of real relationships

Explaining variation in data through
correlational relationships (hopefully causal)



Dynamic Models and Time Series Data

* Dynamic models evolve through time
e and simulate time series

* [nformally compare observed time series &
simulated time series

* Fitting models to data formally compares them



Linear Regression
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Data in Epicalc R Library taken from Areekul et al. (1970).



Linear Regression
Null hypothesis: No relationship

e i A
Y=a > © |Y.=a=33 °
E o
g; °
. . 2 o _ ® ~

s this a good fit? Té Tle %
S 2 e

How can we get a better > . o

fit, or the best fit? S | | | |

0 S10[0) 1000 1500 2000

hook worm burden



Linear Regression
Null hypothesis: No relationship
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One option is Least Squares Fitting

Choose a line Y = a + BX to minimize



Linear Regression
Null hypothesis: No relationship
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Choose a line Y = a + BX to minimize



Linear Regression

Another option is
Maximum Likelihood
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Choose &, [AS, o to maximize the likelihood
i.e. probability of observed data given a model



Linear Regression

Maximum Likelihood
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Choose &, [AS, o to maximize the likelihood
i.e. probability of observed data given a model



probability density

Linear Regression

Maximum Likelihood
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probability density

Linear Regression

Maximum Likelihood
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Linear Regression

Maximum Likelihood
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Linear Regression

Parameter Estimation
& Inference
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B=0.04
P(estimating a B this extreme |null) Confidence intervals

P = 6.99e-05 < 0.05, Collection of
non-rejectable null hypotheses

so we reject the null hypothesis.

A

B = 0.04(0.025, 0.056)



frequency

Isita good model: = .-

Checking Assumptions
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s it a good model: I ..
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Is it a good model:
Goodness of Fit
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How much of the variationin Y is

explained by the model?



Is it a good model:

Goodness of Fit P rEES

Chi Squared
Goodness of Fit Test PDF for 2.,

e Does the observed data differ significantly from our model?
e |f not, then we cannot reject our model as a bad model.
e But we cannot accept our model (the null hypothesis) !



Isita good model: - -
Goodness of Fit e

Likelihood Ratio Test (G test, Analysis of Deviance, ANOVA)

PDF for 5.,

Under the null hypothesis:



Isita good model: - -
Model Selection e

Likelihood Ratio Test (G test, Analysis of Deviance, ANOVA)

PDF for 5.,

Under the null hypothesis:



Is it a good model:
Model Selection

Akaike’s Information Criterion (AIC)

AIC = -2log(L) + 2(# of parameters)
| )
l

penalty for adding parameters

Rank proposed models by AIC: lowest is best.

All models within 2 of lowest should be considered.

oooooooooooooo




Overfitting

You can always fit N data points with N
parameters.

How many is too many?
Bias/Variance Tradeoff

AIC, Cross-validation



Collinearity

* Independent variables that vary with each
other

Non-ldentifiability

 Multiple parameter sets fit about equally well



What did we just do?

Asked a question about a relationship

Made some observations (data)

daily blood loss (mg/day)

Formulated the relationship into a model

Fitted the model to data
Assessed model fit/quality (model selection)
Inference/parameter estimation

Improved our understanding of the world
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probability
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hypothetical prevalence: 15 %

dbinom(28, 100, 0.15) = 0.00035

<€



hypothetical prevalence: 20 %

dbinom(28, 100, 0.2) = 0.014



hypothetical prevalence: 25 %

dbinom(28, 100, 0.25) = 0.07



hypothetical prevalence: 30 %

dbinom(28, 100, 0.3) = 0.08



hypothetical prevalence: 35 %

dbinom(28, 100, 0.35) = 0.029



hypothetical prevalence: 40 %

dbinom(28, 100, 0.4) = 0.0038



Which prevalence gives the greatest probability
of observing exactly 28/1007?

hypothetical prevalence: 15 %

dbinom(28, 100, 0.15) = 0.00035

hypothetical prevalence: 30 %
dbinom(28, 100, 0.3) = 0.08

hypothetical prevalence: 20 %
dbinom(28, 100, 0.2) = 0.014

hypothetical prevalence: 35 %
dbinom(28, 100, 0.35) = 0.029

hypothetical prevalence: 25 %
dbinom(28, 100, 0.25) = 0.07

\

hypothetical prevalence: 40 %
dbinom(28, 100, 0.4) = 0.0038
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Which of these prevalence values is most likely

hypothetical prevalence: 15 %
dbinom(28, 100, 0.15) = 0.00035

given our data”

hypothetical prevalence: 20 %
dbinom(28, 100, 0.2) = 0.014

hypothetical prevalence: 35 %
dbinom(28, 100, 0.35) = 0.029

hypothetical prevalence: 25 %
dbinom(28, 100, 0.25) = 0.07

L

hypothetical prevalence: 40 %
dbinom(28, 100, 0.4) = 0.0038



p(our data given prevalence) = LIKELIHOOD

™

Maximum Likelihood Estimate
parameter value giving greatest probability
of the data having occurred.

What do you think is the MLE here?
MLE = 28/100 = 0.28

true unknown value = 0.30 :
different null hypotheses



Defining Likelihood

 |(parameter | data) = p(data | parameter)
* Not a probability f“”"“]’” o

distribution.
PDF:

 Probabilities
taken from many
different LIKELIHOOD:
distributions. T

function of p



Deriving the Maximum Likelihood Estimate

maximize

i

maximize

l 1

minimize
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we usually minimize the -log(likelihood)

Maximum Likelihood Estimate



Building Confidence Intervals
Likelihood Ratio Test

If the null hypothesis were true then PDF for »2
df=1

So if our a = .05, then we reject any null hypothesis for which

> qchisq(p = .95,df = 1)
[1] 3.841459

we reject that null hypothesis.



Building Confidence Intervals
Likelihood Ratio Test

Maximum Likelihood Estimate

Let’s zoom in...




Building Confidence Intervals
Likelihood Ratio Test

Maximum Likelihood Estimate



Building Confidence Intervals
Likelihood Ratio Test

1.92




Building Confidence Intervals
Likelihood Ratio Test



Statistical Models

Account for bias and
random error to find
correlations that may imply
causality.

Often the first step to
assessing relationships.

Assume independence of
individuals (at some
scale).

Dynamic Models

|
e Systems Approach:

Explicitly model multiple
mechanisms to understand
their interactions.

Links observed
relationships at different
scales.

Explicitly focuses on
dependence of individuals

By developing dynamic models in a probabilistic framework we
can account for dependence, random error, and bias while
linking patterns at multiple scales.



Fitting Dynamic Models to Data

Adapt our dynamic models in a probabilistic
framework so we can ask:

What is the probability that a model would have
generated the observed data?

What is the likelihood of a model given the data?






Binomial Distribution

Distribution
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Exponential Distribution

Distribution




Poisson Distribution

Distribution




Binomial Distribution

Stochastic Component of Model

Distribution
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Collinearity

* Independent variables that vary with each
other

Non-ldentifiability
 Multiple parameter sets fit about equally well

* Can be informative in dynamic models



Acute HIV Infection

e Thought to be extremely infectious

e Epidemiological evidence from a Ugandan couples cohort

d = acute phase duration

acute
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acute phase
(period of elevated infectivity)

time since infection




The Rakai Retrospective Cohort Study

10/23 in same interval O Seronegative partner

@ seropositive partner

acute ? loss to follow-up

¥ dead partner

chronic

late

Wawer et al. (2005). Journal of Infectious Diseases.



Mechanistic Transmission Model

Parameter Description Value (95% Cl)
B.cute Transmission rate / 100 person-years 276 (131-509)
d.ute Acute phase duration 2.90 (1.23-6.00)
Bchronic Transmission rate / 100 person-years  10.6 ( 7.61 —13.3)

RH, 1. = 276/10.6 = 26

But what about the wide confidence intervals?

Hollingsworth et al. (2008). Journal of Infectious Diseases.



Collinearity in Fitted Parameters

Holl. 2008: RHacute= 26' dacute= 2.9
B

10 100
RHacute

Revisit original data & method.



Collinearity in Fitted Parameters

Holl. 2008: RHacute= 26' dacute= 2.9
B

@ ourrefit: RH, =42, d,,.=1.5

acute

10 100
RHacute

Refit the same model using Bayesian MCMC




Collinearity in Fitted Parameters

Holl. 2008
|

@ our refit

95% CI

10 100
RHacute

Refit the same model using Bayesian MCMC



Collinearity in Fitted Parameters

Data are consistent with both
e shorter, highly infectious

e |onger, less infectious
acute phases

95% Cl

10 100
RHacute

Refit the same model using Bayesian MCMC




Collinearity in Fitted Parameters

What is actually

ldentifiable?
RHacute = 26 for 3 months Excess Hazard-Months
chronic EiCWA\IDSI due to acute phase
EHM__ 1o = (RH 1o~ 1)d, e
EHM__ .. = 25%3 = 75
EHM =15*5=75

acute

T T T T T T T T T
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years since infection




Excess Hazard Months (EHM

acute)

dacute (monthS)

chronic late AIDS

95% Cl
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Excess Hazard Months (EHM

acute)

EH Macute
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RH, . andd,.,. are not identifiable from 10-month interval cohorts

We should focus on EHM

acute



Formally vs Informally Fitting

 Most modeling studies do not fit data formally

* Unnecessary for demonstration of qualitative
dynamics

* Necessary for
parameter estimation
inference
formal model comparison



Learning More: Methods for Fitting

* Least Squares

* Frequentist Maximum Likelihood Fitting

e Bayesian Posterior Estimation (usually MCMC)



Simulating to test methods

e Create model
 Simulate data

e Can you estimate the inputted parameters for
the simulation by fitting?



Simulating to test methods

5 Urban Villages 5 Rural Villages



Summary

* Why we fit
parameter estimation
inference
formal model comparison

* How we fit
Create a probabilistic framework that links
our model to data—ie, write a likelihood

* What to consider when fitting
Assumptions Goodness of fit
Overfitting ldentifiability



