

Models and Data

Introduction to Model Fitting

Clinic on Dynamical Approaches to Infectious Disease Data

December 16, 2014

Steve Bellan, MPH, PhD

Post-doctoral Researcher, University of Texas at Austin

What happened?

Antenatal HIV Prevalence in Harare

Are these different?

Measles Outbreaks

Why fit models to data?

Estimate quantities/parameters of interest

Inference: Test hypotheses

Model assessment:

Assess plausibility or model comparison

End goal: explain observed patterns or predict

Statistical Models

A familiar starting point

Analogous to fitting dynamical models

Abstraction of real relationships

Explaining variation in data through correlational relationships (hopefully causal)

Dynamic Models and Time Series Data

Dynamic models evolve through time

and simulate time series

 Informally compare observed time series & simulated time series

Fitting models to data formally compares them

How does hook worm burden

affect blood loss?

Is there any relationship?

Data in Epicalc R Library taken from Areekul et al. (1970).

Null hypothesis: No relationship

$$Y = \alpha$$

Is this a good fit?

How can we get a better fit, or the best fit?

Null hypothesis: No relationship

$$Y_i = \alpha + \epsilon_i$$

Is this a good fit?

How can we get a better fit, or the best fit?

hook worm burden

One option is Least Squares Fitting

Choose a line $Y = \hat{\alpha} + \hat{\beta}X$ to minimize Σ (residuals)²

Null hypothesis: No relationship

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

Is this a good fit?

How can we get a better fit, or the best fit?

hook worm burden

One option is Least Squares Fitting

Choose a line $Y = \hat{\alpha} + \hat{\beta}X$ to minimize Σ (residuals)²

hook worm burden expected daily blood loss intercept error effect of hook worm burden

Linear Regression

hook worm burden

One option is Least Squares Fitting

Choose a line $Y = \hat{\alpha} + \hat{\beta}X$ to minimize $\Sigma(\epsilon_i)^2$

Another option is

Maximum Likelihood

$$Y_i = \alpha + \beta X_i + \epsilon_i$$

$$\epsilon_i \sim N(0, \sigma^2)$$

hook worm burden

Choose $\hat{\alpha}$, $\hat{\beta}$, $\hat{\sigma}$ to maximize the likelihood i.e. probability of observed data given a model

Maximum Likelihood

$$Y_i \sim N(\alpha + \beta X_i, \sigma^2)$$

Choose $\hat{\alpha}$, $\hat{\beta}$, $\hat{\sigma}$ to maximize the likelihood i.e. probability of observed data given a model

Maximum Likelihood

$$Y_i \sim N(\alpha + \beta X_i, \sigma^2)$$

probability density

$$P(Y_1,...,Y_n \mid \hat{\alpha}, \hat{\beta}, \hat{\sigma}) = \prod_{i=1}^n P(Y_i \mid \hat{\alpha}, \hat{\beta}, \hat{\sigma})$$

80

Maximum Likelihood

function of parameters

daily blood loss (mg/day) function of data 500 1000 1500 2000 hook worm burden

PDF:
$$P(Y_1,...,Y_n \mid \hat{\alpha}, \hat{\beta}, \hat{\sigma}) = \prod_{i=1} P(Y_i \mid \hat{\alpha}, \hat{\beta}, \hat{\sigma})$$

LIKELIHOOD:
$$L(\hat{\alpha}, \hat{\beta}, \hat{\sigma} \mid Y_1, ..., Y_n) = \prod_{i=1}^n P(Y_i \mid \hat{\alpha}, \hat{\beta}, \hat{\sigma})$$

Parameter Estimation & Inference

Null hypothesis: $\beta = 0$

$$\hat{\beta} = 0.04$$

P(estimating a β this extreme | null)

$$P = 6.99e-05 < 0.05$$
,

so we reject the null hypothesis.

Confidence intervals

Collection of non-rejectable null hypotheses

$$\hat{\beta} = 0.04 (0.025, 0.056)$$

Is it a good model: Checking Assumptions

Normality

Is it a good model: Checking Assumptions

Linearity

Independence

Constant Variance

worm burden

Is it a good model: Goodness of Fit

 R^2 = (correlation coefficient)²

How much of the variation in Y is explained by the model?

Is it a good model: Goodness of Fit

Chi Squared Goodness of Fit Test

$$\chi^{2} = \frac{1}{n-1} \sum_{i=1}^{n} \frac{(Observed_{i} - Expected_{i})^{2}}{\sigma^{2}}$$

- Does the observed data differ significantly from our model?
- If not, then we cannot reject our model as a bad model.
- But we cannot accept our model (the null hypothesis)!

Is it a good model: Goodness of Fit

Likelihood Ratio Test (G test, Analysis of Deviance, ANOVA)

Under the null hypothesis:

$$2\log \frac{L_{MLE}}{L_{Null}} \sim \chi_{\text{df = difference in \# of parameters}}^2$$

Is it a good model: Model Selection

Likelihood Ratio Test (G test, Analysis of Deviance, ANOVA)

Under the null hypothesis:

$$2\log \frac{L_{\text{more parameters}}}{L_{\text{less parameters}}} \sim \chi_{\text{df = difference in \# of parameters}}^2$$

Is it a good model: Model Selection

Akaike's Information Criterion (AIC)

Rank proposed models by AIC: lowest is best.

All models within 2 of lowest should be considered.

Overfitting

You can always fit N data points with N parameters.

How many is too many?

Bias/Variance Tradeoff

AIC, Cross-validation

Collinearity

Independent variables that vary with each other

Non-Identifiability

Multiple parameter sets fit about equally well

What did we just do?

- Asked a question about a relationship
- Made some observations (data)
- Formulated the relationship into a model
- Fitted the model to data
- Assessed model fit/quality (model selection)
- Inference/parameter estimation
- Improved our understanding of the world

Introduction to Likelihood

We sample 100 people once and 28 are positive:

```
> rbinom(n = 1, size = 100, prob = .3)
[1] 28
```


hypothetical prevalence: 20 %

hypothetical prevalence: 25 %

number HIV+

Which prevalence gives the greatest probability of observing exactly 28/100?

Which of these prevalence values is most likely given our data?

Defining Likelihood

- L(parameter | data) = p(data | parameter)
- Not a probability distribution.

function of x
$$\downarrow \qquad \qquad \downarrow$$
PDF: $f(x \mid p) = \binom{n}{x} p^x (1-p)^{n-x}$

Probabilities

 taken from many
 different
 distributions.

LIKELIHOOD:
$$L(p \mid x) = \binom{n}{x} p^x (1-p)^{n-x}$$
function of p

Deriving the Maximum Likelihood Estimate

maximize
$$L(p) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

maximize
$$\log(L(p) = \log \left[\binom{n}{x} p^x (1-p)^{n-x} \right]$$

we usually minimize the -log(likelihood)

If the null hypothesis were true then

$$-2\log(\frac{L(\text{null hypothesis})}{L(\text{alternative hypothesis})} \sim \chi_{df=1}^{2})$$

$$2l_{alternative} - 2l_{null} \sim \chi_{df=1}^2$$

So if our $\alpha = .05$, then we reject any null hypothesis for which

$$2l_{MLE} - 2l_{null} > \chi^2_{df=1, \alpha=0.05} = 3.84$$

$$>$$
 qchisq(p = .95, df = 1) [1] 3.841459

$$2l_{MLE} - 2l_{null} > 3.84$$

$$l_{MLE} - l_{null} > 1.92$$

When
$$I_{MLE}$$
 - I_{null} > 1.92, we reject that null hypothesis.

Statistical Models

- Account for bias and random error to find correlations that may imply causality.
- Often the first step to assessing relationships.
- Assume independence of individuals (at some scale).

Dynamic Models

- Systems Approach:

 Explicitly model multiple
 mechanisms to understand
 their interactions.
- Links observed relationships at different scales.
- Explicitly focuses on dependence of individuals

By developing dynamic models in a probabilistic framework we can account for dependence, random error, and bias while linking patterns at multiple scales.

&

Fitting Dynamic Models to Data

Adapt our dynamic models in a probabilistic framework so we can ask:

What is the probability that a model would have generated the observed data?

What is the likelihood of a model given the data?

<u>Likelihood</u> of parameters (given data)

Binomial Distribution

successes in N trials

Normal Distribution

(approximately) continuous variable

Exponential Distribution

time until event

Poisson Distribution

of events in time interval

Collinearity

Independent variables that vary with each other

Non-Identifiability

Multiple parameter sets fit about equally well

Can be informative in dynamic models

Acute HIV Infection

- Thought to be extremely infectious
- Epidemiological evidence from a Ugandan couples cohort

The Rakai Retrospective Cohort Study

Wawer et al. (2005). Journal of Infectious Diseases.

Mechanistic Transmission Model

Parameter	Description	Value (95% CI)
$oldsymbol{eta}_{\sf acute}$	Transmission rate / 100 person-years	276 (131-509)
d_{acute}	Acute phase duration	2.90 (1.23-6.00)
$eta_{chronic}$	Transmission rate / 100 person-years	10.6 (7.61 – 13.3)

$$RH_{acute} = 276/10.6 = 26$$

But what about the wide confidence intervals?

What is actually Identifiable?

Excess Hazard-Months due to acute phase

$$EHM_{acute} = (RH_{acute}-1)d_{acute}$$

$$EHM_{acute} = 25*3 = 75$$

$$EHM_{acute} = 15*5 = 75$$

$$EHM_{acute} = 100*3/4 = 75$$

Excess Hazard Months (EHM_{acute})

Excess Hazard Months (EHM_{acute})

RH_{acute} and d_{acute} are not identifiable from 10-month interval cohorts

We should focus on EHM_{acute}

Formally vs Informally Fitting

Most modeling studies do not fit data formally

Unnecessary for demonstration of qualitative dynamics

Necessary for

 parameter estimation
 inference
 formal model comparison

Learning More: Methods for Fitting

Least Squares

Frequentist Maximum Likelihood Fitting

Bayesian Posterior Estimation (usually MCMC)

Simulating to test methods

Create model

Simulate data

 Can you estimate the inputted parameters for the simulation by fitting?

Simulating to test methods

Summary

Why we fit
 parameter estimation
 inference
 formal model comparison

How we fit
 Create a probabilistic framework that links
 our model to data—ie, write a likelihood

What to consider when fitting
 Assumptions
 Overfitting
 Goodness of fit
 Identifiability