DAIDD Gainesville, Florida December 2014

Model Evaluation and Comparison

Jim Scott, Ph.D, M.A., M.P.H.

Goals

- By the end of this talk, I hope you'll:
 - Have a good sense of what model evaluation is, why it's important, and how it's tied to your research question
 - Know some of the characteristics that are desirable in models

Steps of Mathematical Modeling

Specific question

Identify relevant factors and information

Model formulation

Mathematics

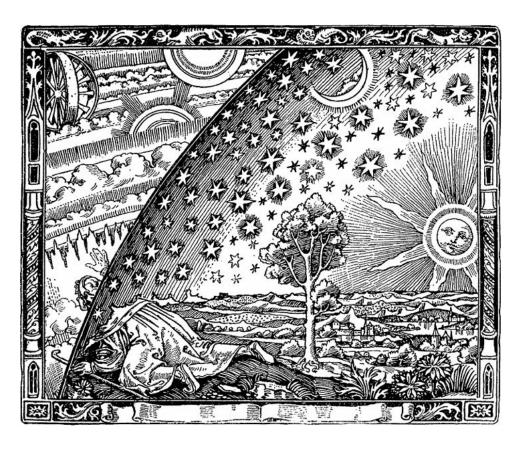
Evaluation

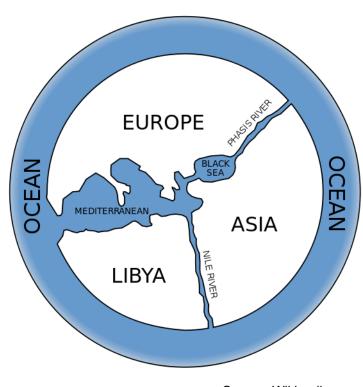
Model evaluation

- "E" topics:
 - Edison, Thomas
 - Epicycle
 - Epidemiology
 - Elasticity
 - Eratosthenes
 - Euler
 - Existence
 - Evolution
 - Extrapolation
 - Eradication

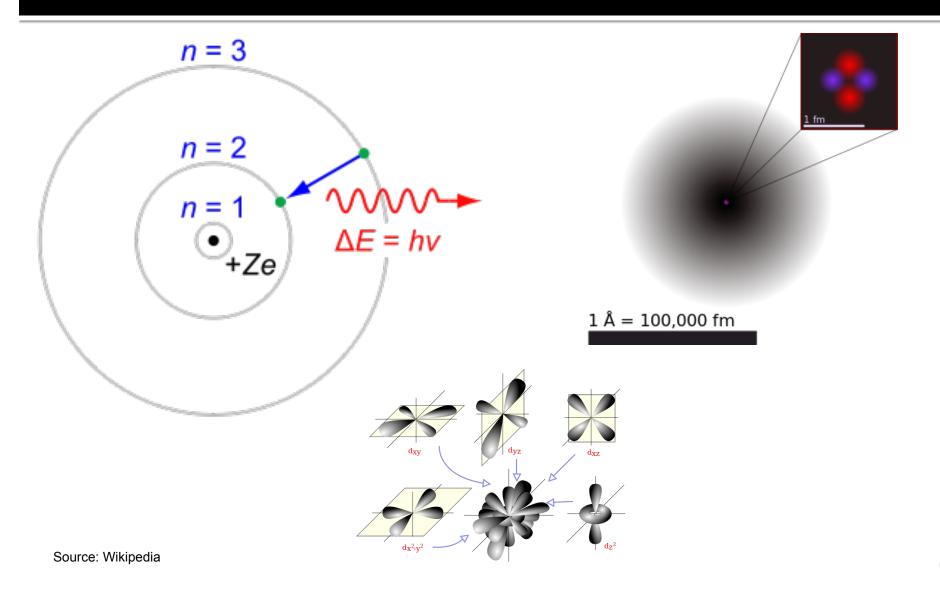
- "M" topics:
 - Malthus, Thomas
 - Mars
 - Maternity
 - Maximum likelihood
 - Maxwell, James C.
 - Misery
 - Monte Carlo
 - Moon
 - Mortality
 - Mumps

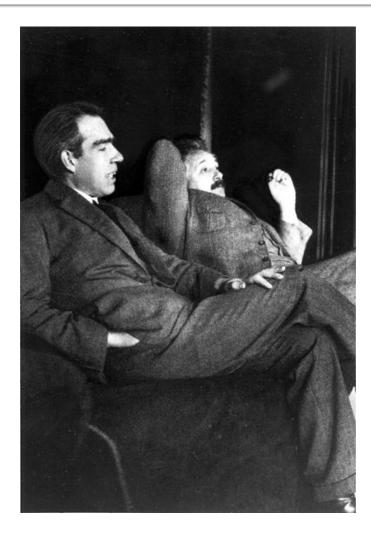
Let's look at a few different types of models

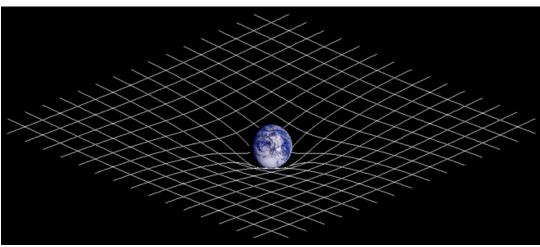




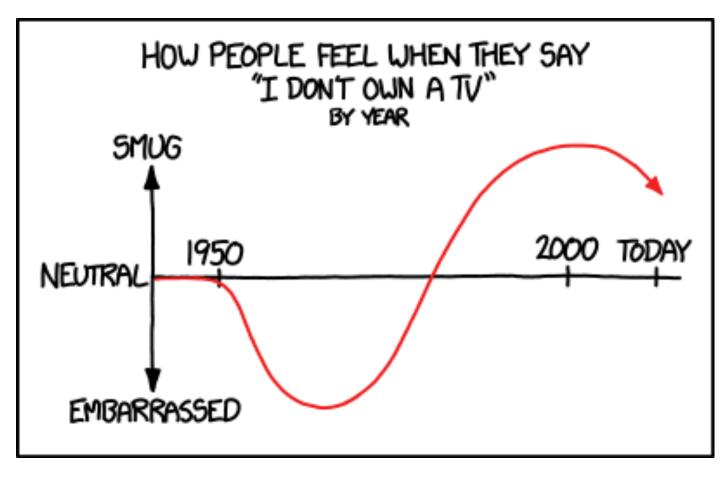
Source: Wikipedia

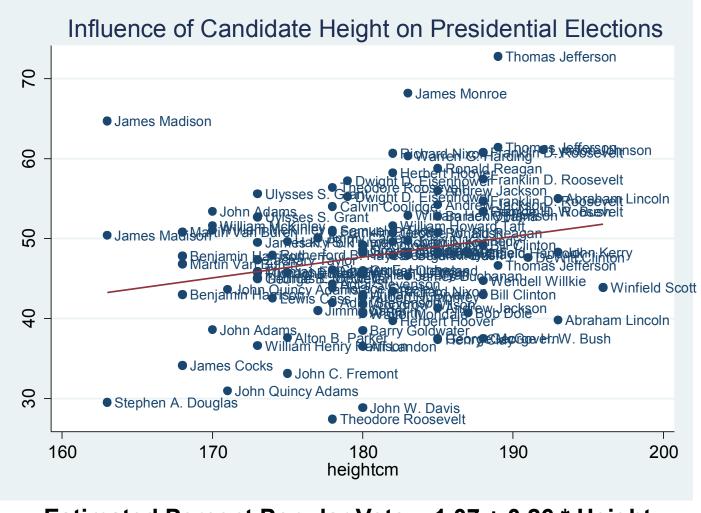




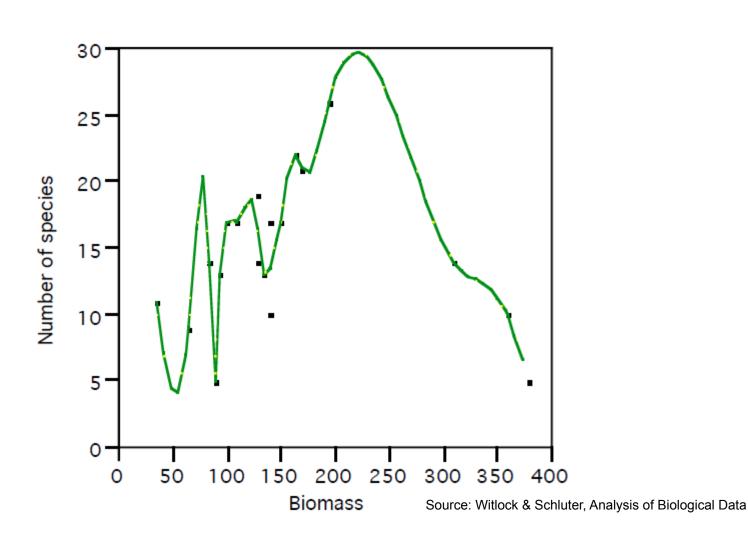


Source: Wikipedia

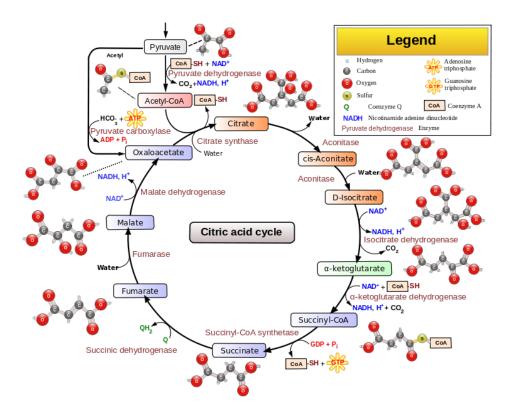


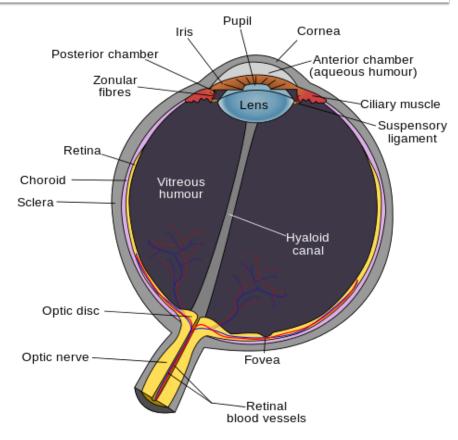


Estimated Percent Popular Vote = 1.07 + 0.26 * Height

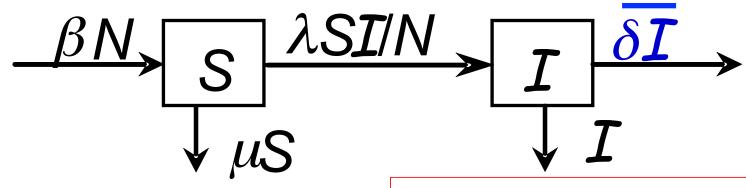


The Krebs Cycle





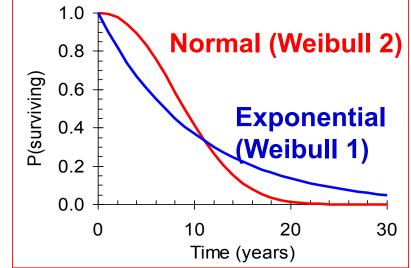
The Eye



$$\beta$$
 = birth rate

$$N = S + I$$

$$\lambda$$
 = infection rate



 $\delta I = \text{Weibull mortality}$

Slide credit: J. Hargrove/B. Williams

That was the last one...remind them about the exercise....

- Consider the previous examples
- Talk with someone next to you
- Come up with a list of characteristics that a "good" model should have
- For example, you might say "simplicity"

Examples of Models

- Flat world
- Atom
- Feelings about TV ownership
- Height and popular vote
- Species and biomass
- Krebs cycle
- The eye
- SIR
- E=mc²

Desirable Characteristics

Accurate (i.e. low bias)

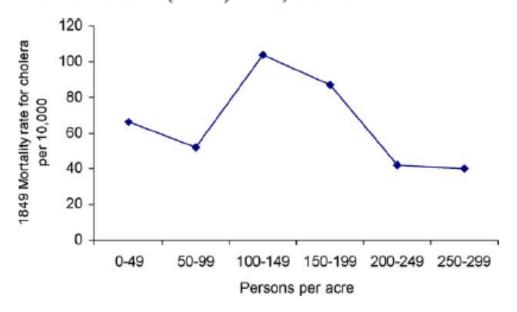
-

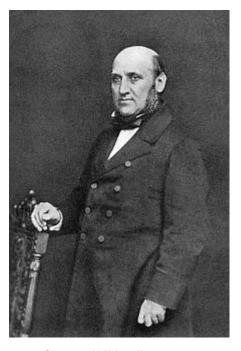
Accuracy

- A model is accurate if estimates based on the model match the truth
 - E.g. models that are used to predict the weather are reasonably accurate when predicting tomorrow's weather. They are much less accurate at predicting the weather at times further into the future.
 - Does the model fit the data

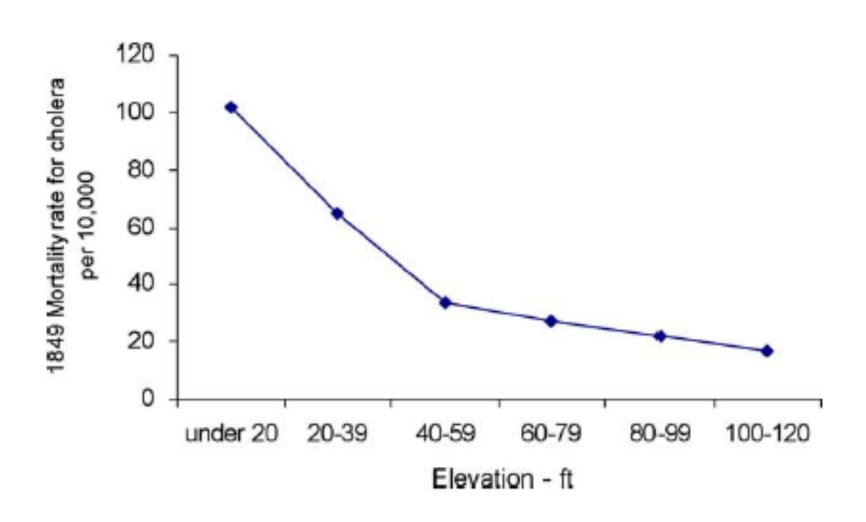
John Snow, William Farr and the 1849 outbreak of cholera that affected London: a reworking of the data highlights the importance of the water supply

P. Bingham^{a,*}, N.Q. Verlander^b, M.J. Cheal^a Public Health (2004) 118, 387-394





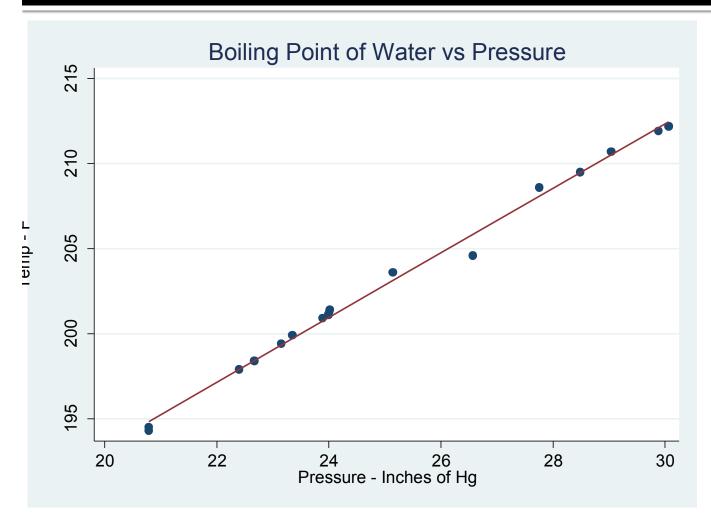
Source: Wikipedia



- Farr initially believed in the miasma theory of disease transmission – disease was propagated by "bad air"
- The higher the elevation, the better the air
- Mortality at terrace level X =
 Mortality at terrace 1 / terrace level X

Table 5 Observed mortality compared with expected for 'terraces of London'. Elevation of Number of Observed 102 divided by the 'terrace' registration mortality 1, 2, 3, 4, 5 and above the districts from cholera 6 ('expected' mortality) Trinity per 10,000 high-water inhabitants mark (feet) 0-19 102 102 16 20 - 39 65 51 40 - 59 34 34 60-79 27 26 80-99 22 20 17 100-120 17 340-359 8

Boiling Point of H2O and Pressure



Source: Wikipedia

r = 0.9972 Est. Temp = 155.3 + 1.90 * Pressure

Desirable Characteristics

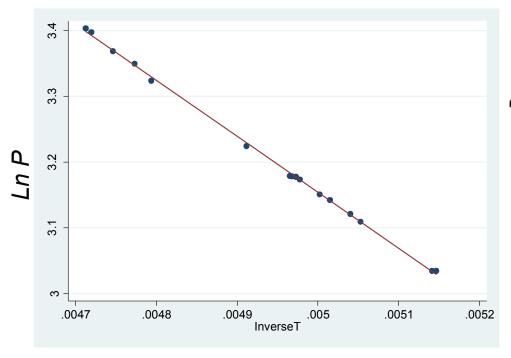
- Accurate (i.e. low bias)
- Descriptively realistic

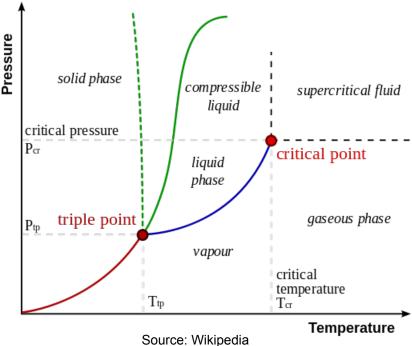
Descriptive realism

- A model is descriptively realistic if it's derived from a correct description of the mechanism involved in whatever is being modeled
 - Corollary: underlying assumptions are correct
 - Statistical models are not descriptively realistic
 - For example, a linear equation only models a pattern in the data – there's nothing telling us what's going on behind the scene
 - An SIR model is more descriptively realistic
 - A mechanism for transmission is specified

Clausius-Clapeyron Relation

$$Ln P = -\frac{L}{R} \left(\frac{1}{T}\right) + C$$





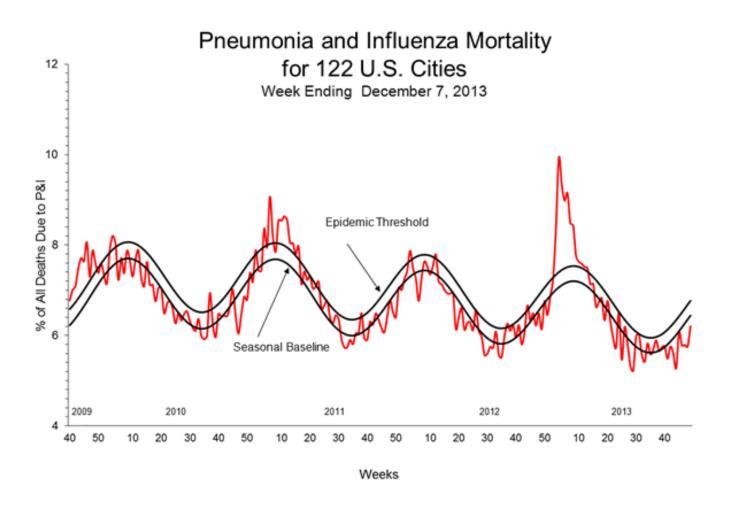
Desirable Characteristics

- Accurate (i.e. low bias)
- Descriptively realistic
- Precise (i.e. low variability)

Precision

- A model is precise if the estimates that the model produces have low variability
 - E.g. a model that estimates that it will start to rain in the next 3 – 6 hours is more precise than a model that estimates it will start to rain in the next 3 – 6 days

Influenza



Estimating HIV Incidence

Estimating HIV incidence rates from age prevalence data in epidemic situations

Brian Williams^{1,*,†}, Eleanor Gouws², David Wilkinson³ and Salim Abdool Karim²

STATISTICS IN MEDICINE

Statist. Med. 2001; 20:2003-2016 (DOI: 10.1002/sim.840)

$$I(a,t) = P(a,t) - P(a-1,t) \frac{\bar{P}(t-1)}{\bar{P}(t)} e^{-\mu}$$

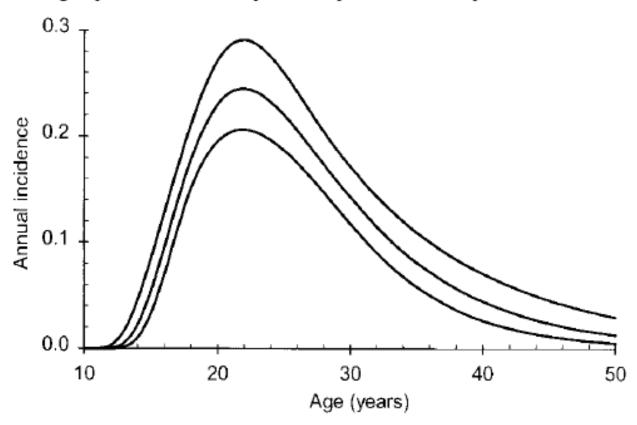
I(*a*,*t*) is the incidence at age *a* at time *t*

P(a,t) is the age-specific prevalence at age a at time t

* Simplified model

Estimating HIV Incidence

The annual age-specific incidence per susceptible with 95 per cent confidence band

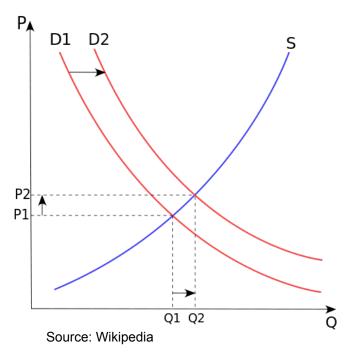


Desirable Characteristics

- Accurate (i.e. low bias)
- Descriptively realistic
- Precise (i.e. low variability)
- General

General

- A model is general if it applies to a wide variety of situations
 - e.g. the law of supply and demand



Simple SIR Model

A Contribution to the Mathematical Theory of Epidemics.

By W. O. KERMACK and A. G. McKendrick.

(Communicated by Sir Gilbert Walker, F.R.S.—Received May 13, 1927.)

(From the Laboratory of the Royal College of Physicians, Edinburgh.)

Source: Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, Vol. 115, No. 772 (Aug. 1, 1927), pp. 700-721

In this case the equations are

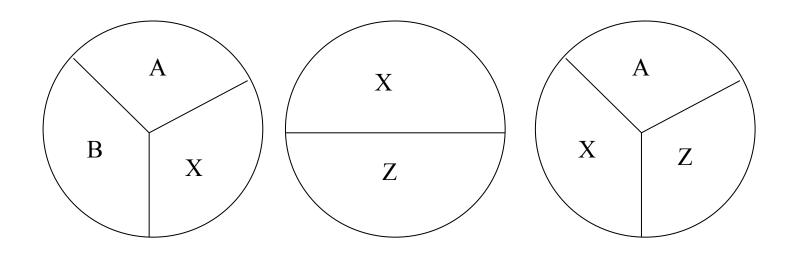
$$egin{aligned} rac{dx}{dt} &= -\kappa xy \ rac{dy}{dt} &= \kappa xy - ly \ rac{dz}{dt} &= ly \end{aligned}$$

and as before x + y + z = N.

Simple SIR Model

$$\frac{dS}{dt} = \frac{-\beta SI}{N} \qquad \frac{dI}{dt} = \frac{\beta SI}{N} - \gamma I \qquad \frac{dR}{dt} = \gamma I$$

Sufficient – Component Cause Model (Rothman)



Each pie represents a *sufficient* cause for disease (i.e. disease is inevitable)

Each letter represents a component cause for a disease

The component cause X is a *necessary* cause (i.e. disease cannot occur without it)

Desirable Characteristics

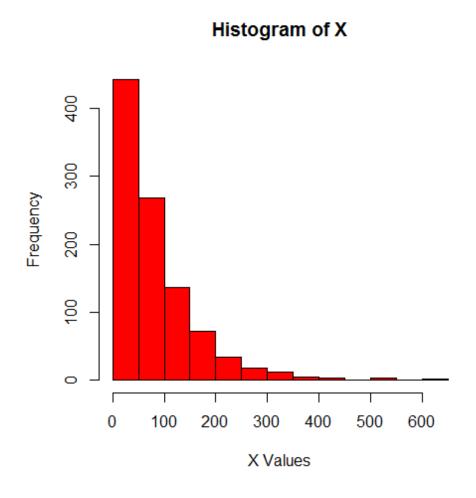
Robust

- Accurate (i.e. low bias)
- Descriptively realistic
- Precise (i.e. low variability)
- Genera

Robust

- A model is robust if it is relatively immune to errors in the data and/or immune to small violations of model assumptions
 - Is the model very sensitive to relatively small changes in estimated input parameters?
 - Model is NOT robust
 - Do model predictions remain accurate even when some key assumptions do not strictly hold?
 - Model IS robust

T-tests



$$t_{n-1} = \frac{\overline{X} - \mu}{\sqrt{n}}$$

$$\frac{0.40}{0.35}$$

$$0.30$$

$$0.25$$

$$0.25$$

$$0.20$$

$$0.15$$

$$0.10$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

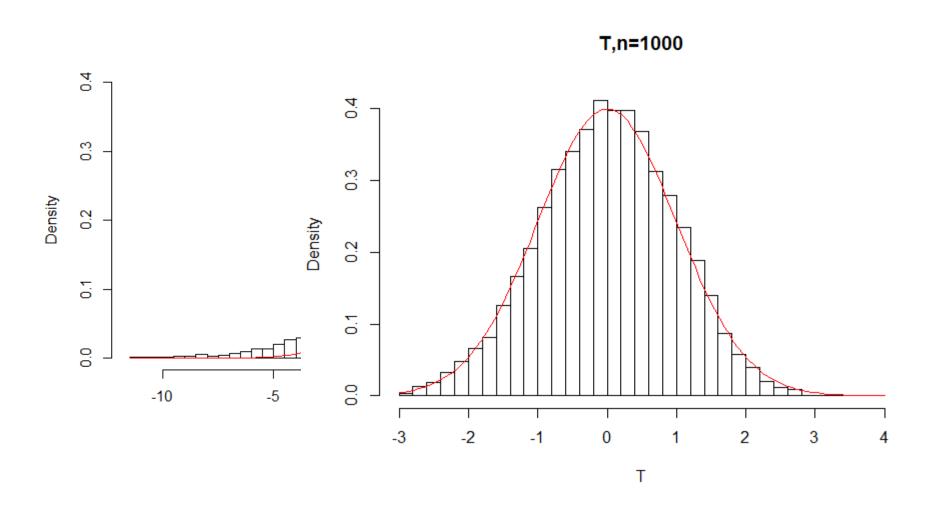
$$0.05$$

$$0.00$$

$$0.05$$

$$0.00$$

T Simulation



Water and Sanitation

Integrating Disease Control Strategies: Balancing Water Sanitation and Hygiene Interventions to Reduce Diarrheal Disease Burden

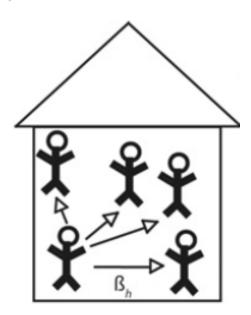
Joseph N.S. Eisenberg, PhD, MPH, James C. Scott, MPH, and Travis Porco, PhD, MPH

American Journal of Public Health | May 2007, Vol 97, No. 5

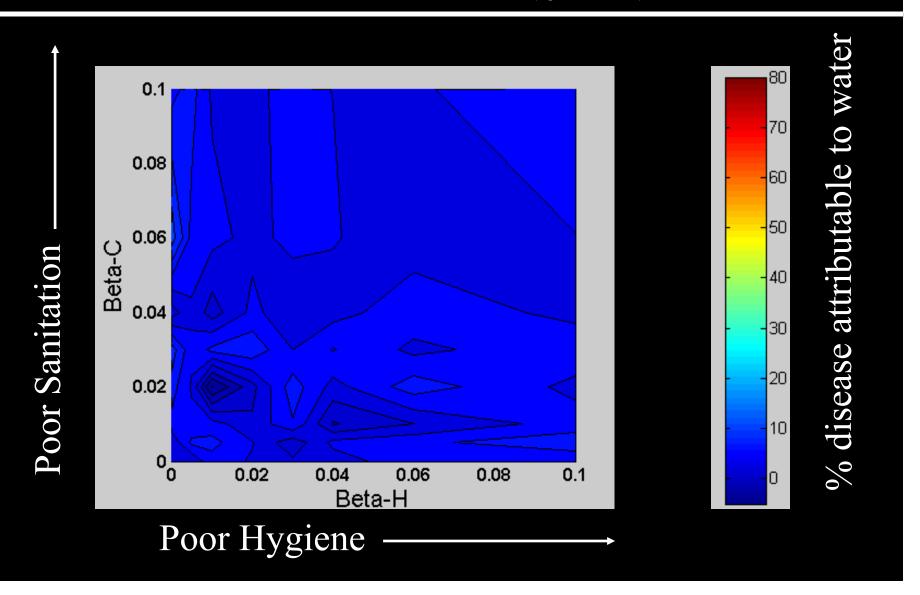
TABLE 1-Parameter Values and Units Used in the Simulation Analysis

	Parameter Values	Units		
ρ	10	Days		
φ	{0, 0.5, 1.0, 1.5, 2.0}	Pathogens/person/day		
β_c	{0, 0.005, 0.01, 0.02, 0.03, 0.04, 0.06, 0.1}	No. of transmission events/infected individual		
β_h	{0, 0.005, 0.01, 0.02, 0.03, 0.04, 0.06, 0.1}	No. of transmission events/infected individual		
3	30	Pathogens		
μ	1	Pathogens/day		
r	0.000002	Infections/pathogen		

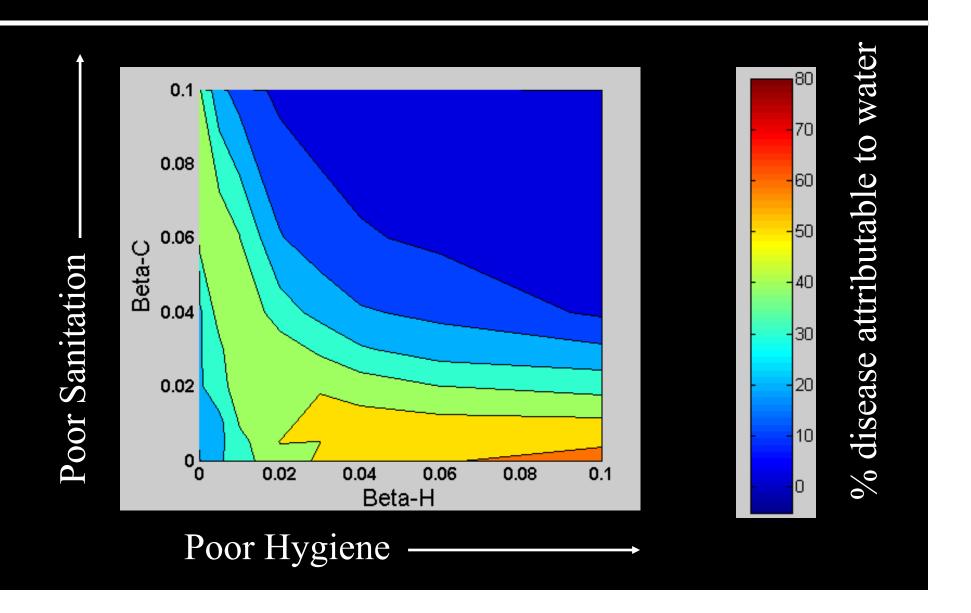
Note. ρ = recovery rate; ϕ = rate at which infected individuals shed pathogens into the water supply; β_c and β_h = betweenand within-household transmission rates; ε = level of environmental contamination; μ = pathogen die-off rate in the water supply; r = risk of infection per pathogen exposure.



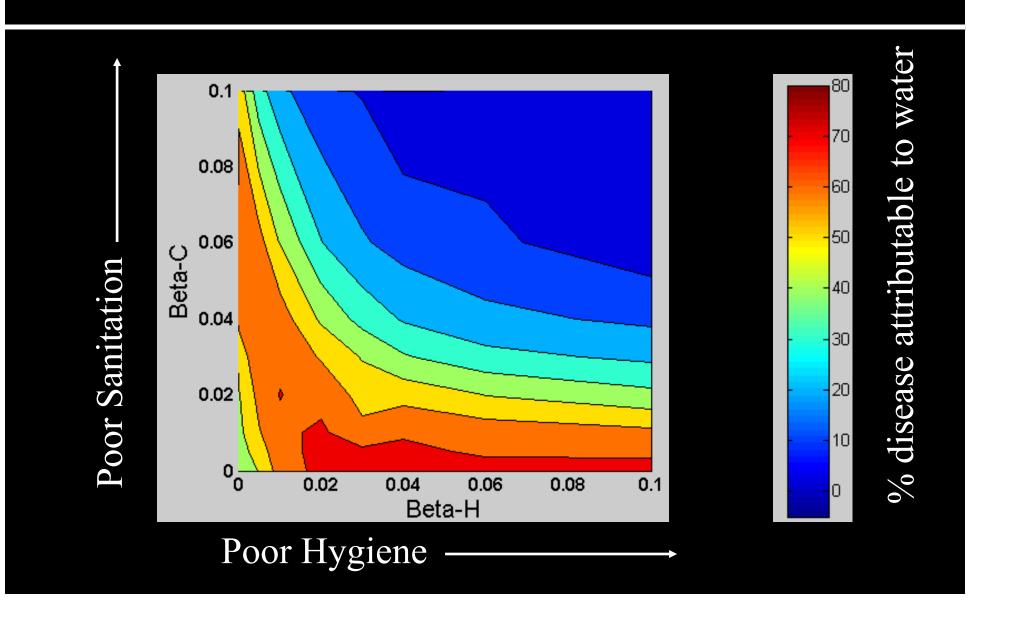
No shedding of pathogens (contamination) into the water $(\phi = 0)$



Moderate contamination ($\phi = 1.0$)



Very high contamination ($\phi = 2.0$)



Desirable Characteristics

- Accurate (i.e. low bias)Robust

- Descriptively realistic
- Simple / Parsimonious

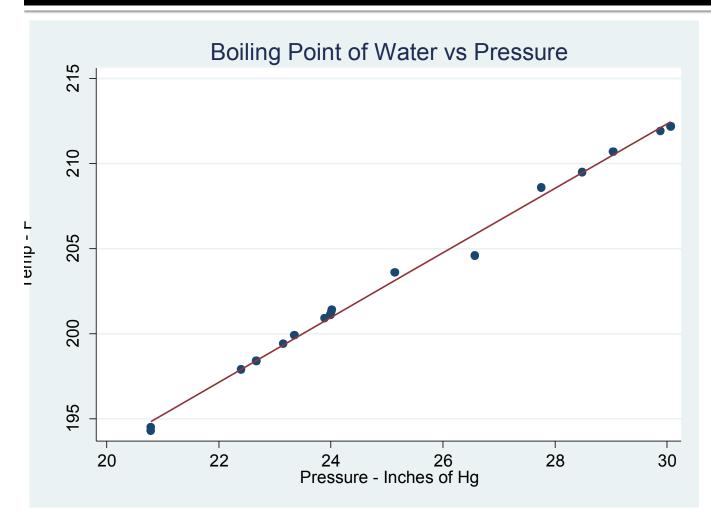
Precise (i.e. low variability)

General

Simple / Parsimonious

- A model is parsimonious if it can "accomplish a lot without much"
 - E.g. a model that selects a relatively small number of the most useful parameters
 - Simple isn't always better
 - The research question should drive the complexity of the model

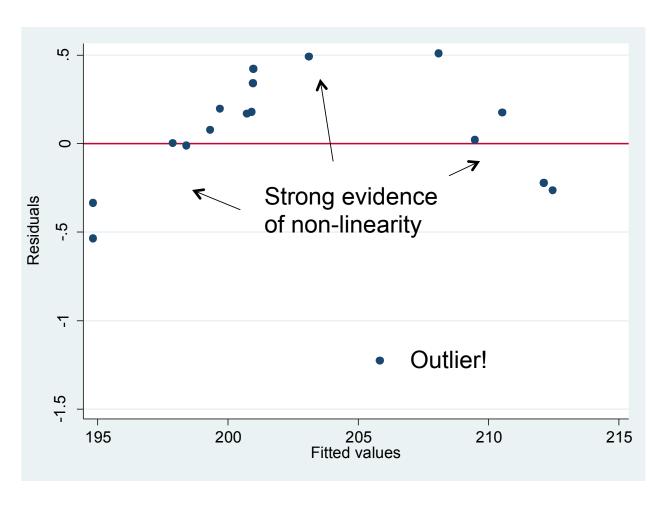
Boiling Point of H2O and Pressure



Source: Wikipedia

r = 0.9972 Est. Temp = 155.3 + 1.90 * Pressure

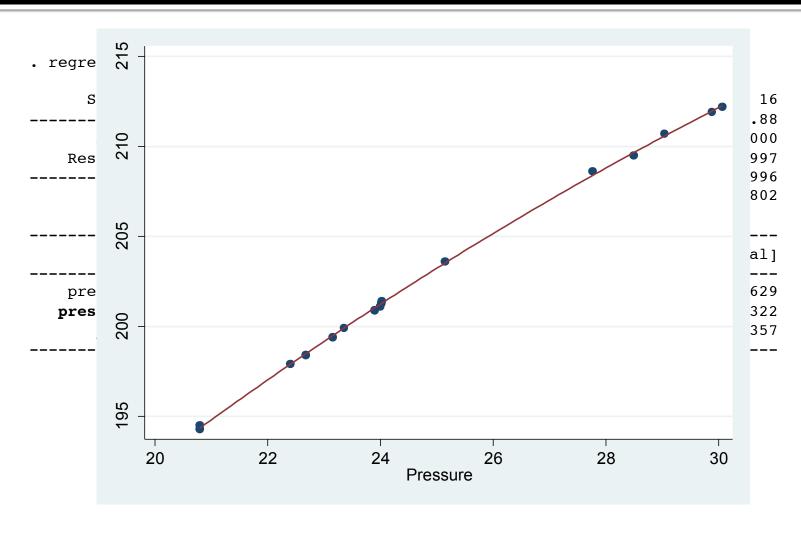
Is the Relationship Linear?



Hmmm...

What does this mean?

Significant non-linearity



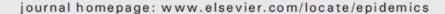
Est. Temp = 131.8 + 3.75 Pressure – 0.036 Pressure²

Model Comparison

Epidemics 3 (2011) 119-124

Contents lists available at ScienceDirect

Epidemics



The epidemiological dynamics of infectious trachoma may facilitate elimination

Thomas M. Lietman ^{a,b,c,d}, Teshome Gebre ^e, Berhan Ayele ^e, Kathryn J. Ray ^a, M. Cyrus Maher ^a, Craig W. See ^a, Paul M. Emerson ^{e,f}, Travis C. Porco ^{a,b,c,*} and The TANA Study Group ^a

$$\frac{dI}{dt} = \frac{\beta SI}{N} - \gamma I \quad \text{vs.} \quad \frac{dI}{dt} = \beta \left(v_1 \frac{\overline{I}}{N} + \frac{I}{N} + v_2 \left(\frac{I}{N} \right)^{\phi + 2} \right) (N - I) - \gamma I$$

AICc: Akaike Information Criterion (correction)

- Used as a model selection tool
 - Penalizes models with excessive parameter spaces
 - AIC = 2k 2ln(L)
 - AICc = AIC + 2k(k+1)/(n-k-1)
- AICc is often used to avoid over-fitting when the sample size is small or the parameter space is large
- Lower AICc → more parsimonious model

Model Comparison

Model	Transmission				Recovery
	Outside	utside Within community		_	
	ν ₁ (95% CI)	β (95% CI)	ν ₂ (95% CI)	φ (95% CI)	γ (95% CI)
1	0.1047 (0.0111, 0.2951) 0.0747 (0.0178, 0.2412)	0.0139 (0.0072, 0.0214)		* 0.8064 (-0.5674, 1.591)	0.0168 (0.0100, 0.0243) 0.0173 (0.0133, 0.0414)
3	*	0.0143 (0.0072, 0.0287)			0.0136 (0.0087, 0.0231)
4	*			1.3137 (-0.5517, 3.131)	0.0140 (0.0114, 0.0240)
5 6	* 0.0112 (-0.0020, 0.0310)	0.0190 (0.0140, 0.0382) 0.0196 (0.0129, 0.0302)		*	0.0109 (0.0079, 0.0226) 0.0113 (0.0073, 0.0179)

$$\frac{dI}{dt} = \frac{\beta SI}{N} - \gamma I$$

$$\frac{\text{Loglikelihood AIC}_c}{-142.40} = \beta \left(v1 \frac{\bar{I}}{N} + \frac{I}{N} + v2 \frac{I}{N}^2 \right)$$
"Simple"
$$-144.64 = 293.56$$

$$-144.64 = 293.56$$

$$-143.67 = 293.92$$

$$-152.81 = 307.72$$

$$-151.99 = 308.25$$

$$\frac{dI}{dt} = \beta \left(v1 \frac{\bar{I}}{N} + \frac{I}{N} + v2 \frac{I}{N}^2 \right)$$
"Best" model (#1)

Desirable Characteristics

- Accurate (i.e. low bias)Robust

- Descriptively realistic
- Simple / Parsimonious

Precise (i.e. low variability)

Useful

General

Useful

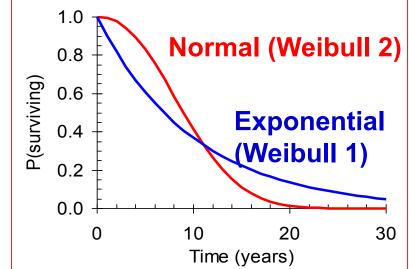
- A model is *useful* if:
 - its conclusions are useful
 - it points the way to other good models
 - E.g. Modeling HIV exercise
 - The early models weren't necessarily accurate but they were useful

This is a useful model

$$\beta$$
 = birth rate

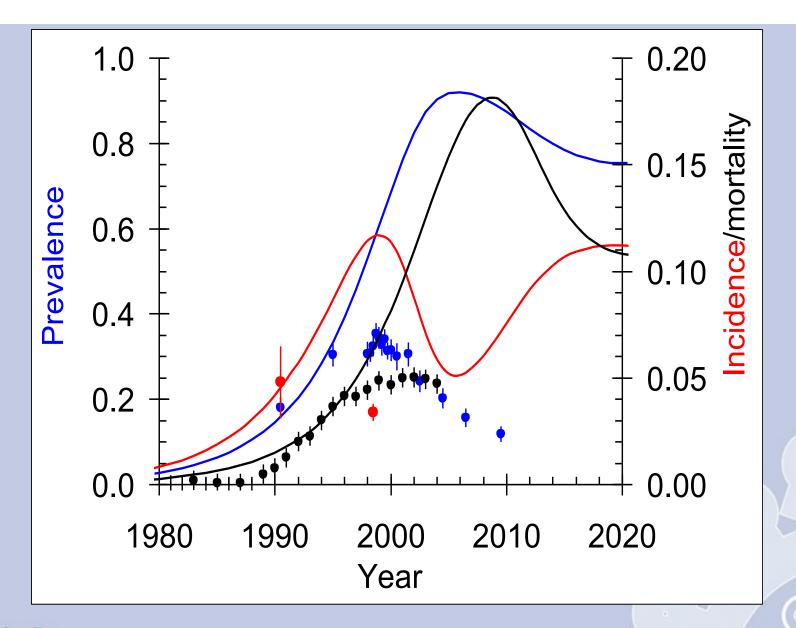
$$N = S + I$$

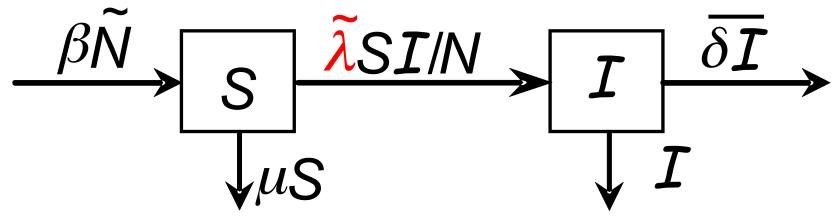
$$\lambda$$
 = infection rate



 $\delta I = Weibull mortality$

Slide credit: J. Hargrove/B. Williams



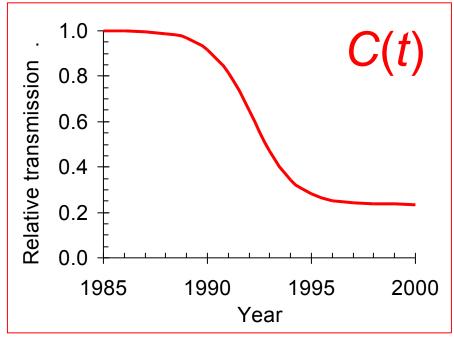


$$\beta$$
 = birth rate

$$\widetilde{N}$$
 = population

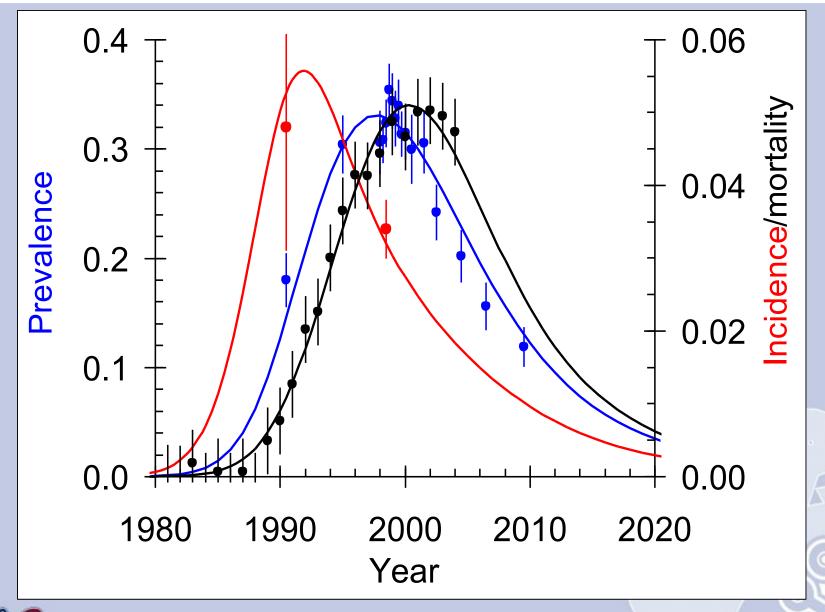
$$\widetilde{\lambda} = \widehat{\lambda}C(t)$$

$$\overline{\delta I}$$
 = mortality



Slide credit: J. Hargrove/B. Williams

Including control



Desirable Characteristics

- Accurate (i.e. low bias)Robust

- Descriptively realistic
- Simple / Parsimonious

Precise (i.e. low variability)

Useful

General

- Inexpensive
- Others???

What makes a model "good"?

- Accurate (i.e. low bias)Robust

- Descriptively realistic
- Simple / Parsimonious

Precise (i.e. low variability)

Useful

General

- Inexpensive
- Others???

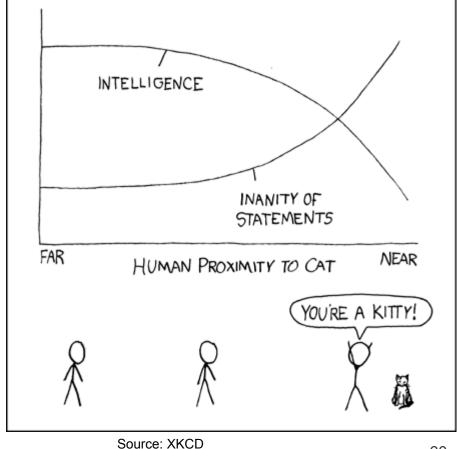
What makes a model "good"?

- It really depends on what your original research question was
 - Was the goal to accurately predict something?
 - Was the goal to determine a relationship between two or more parameters?
 - Was the goal to understand a system in general terms?
 - Was the goal to test a hypothesis? Or to generate one?

Exercise

- Consider each of the models presented today
 - What are the good things about each model?
 - What are the shortcomings of each model?

Final word:



Sources

- Concepts of Mathematical Modeling, Walter Meyer, McGraw-Hill, 1984
- Probability and Statistics, Charles Stone, Duxbury, 1996
- Modeling Infectious Diseases in Humans and Animals, Keeling and Rohoni, Princeton,
 2008
- Mathematical Models for Communicable Diseases, Brauer and Castillo-Chavez, SIAM,
 2013
- The Analysis of Biological Data, Whitlock and Schluter, Roberts and Company, 2008
- Wikipedia
- XKCD